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A b s t r a d  Random walks are simulated on finite slages of construction of regular fractal lattices. 
It is proved that the mean-square displacement (RB) obeys a finite-sire scaling hypothesis and the 
critical exponent vUl is estimated. The efficiency ofthe method is proved when applied to finitely 
ramified fractals in which the problem is exactly solvable. uYl is obtained with good accuracy 
(r 1%) for a class of infinitely ramified fractals. the Sierpinski carpets. The results conen  
previous estimares bared on simulations which did not use f in i tes i i  scaling. It is shown that 
uUl decreases when DF decreases with very small corrections due to other geometrical properties 
such as lacunarity. The comparison with estimares of the ideal chain exponent vc shows that 
the WO problems xe not equivalent on these fractals. and that in general vW > v,. Estimates of 
vlU with the same accuracy are obtained on two Sierpinski pastry shells (2 c D p  3), where 
anomalous diffusion is also observed. 

1. Introduction 

Random walks on fractals have been studied intensively in the last few years especially due 
to their relation to diffusion in disordered systems [l]. Their most important property is the 
anomalous diffusion: the mean-square displacement of the walker varies with the number 
of steps N as 

(Ri) - N2”= 

with U, i 4 (U, = I / &  where Dw is the dimension of the random walk), while in 
Euclidean lattices utll = 4. The irregularities Of the fractals are responsible for the delay of 
the diffusion [I]. 

In the random walk problem on a lattice, the walker at a certain site after N - 1 steps 
has equal probability to jump to any of its neighbouring sites in the Nth step. The statistical 
weight of the walk depends on the sites it visits if the coordination number of the lattice is 
not uniform [1,2]. 

The ideal chain problem is closely related to the random.walk. It is defined on the same 
ensemble of walks, but the statistical weight Of the chain depends only on its length ( x N ,  
where x is the step fugacity). It is the equilibrium statistical problem of an ideal polymer 
(with no self-avoiding effects) in solution [31. The mean square end-to-end distance of the 
ideal chain scales according to 

In Euclidean lattices and also on fractals with uniform coordination number (e.g. the 
Sierpinski gasket), the random walk and the ideal chain have the same asymptotic behaviour, 
i.e. U. = vc [1.4]. 
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However, the two problems have different behaviours in fractals with non-uniform 
coordination numbers, where the ideal chain is (statistically) attracted to the sites with 
highest coordination [5,6]. When those sites form an infinite connected cluster, the ideal 
chain is more stretched than the random walk, so that v, 5 v,. But when those sites 
ire isolated, they act as ‘entropic traps’, preventing the swelling of the chain and leading 
to localization effects: U, = 0 and ( R i )  may grow, for instance, as logN [6]. All these 
properties have been observed in finitely ramified fractals where both problems can be solved 
exactly. The interesting features of random walks and ideal chains also made both problems 
useful tools for finding the effects of the fractal geometry on physical systems. More efforts 
to solve these problems in other regular fractals (constructed iteratively according to fixed 
rules) are also justified. 

- .... 
STAGE L1-I n.a 

Figure 1. Iterative consmction ofa Sierpinski c q e t  whose fractal dimension is D p  = In 8/ In 3. 

In most of the infinitely ramified fractals, however, there are no exact solutions to these 
problems. It is the case of Sierpinski carpets (figure 1) and Sierpinski pastry shells. Some 
exact relations for Rw in the carpets have been obtained [7, 81, but not the exact value of w w .  

Exact enumeration techniques were used to estimate v, in the calpets, and some scaling 
properties of the chains suggested that they are asymptotically different from random 
walks [9]. 

Estimates of uw were also obtained from several techniques. Gefen et al [lo] used a 
bond-moving renormalization scheme, which was improved by Kim ei al [SI, who derived 
rigorous lower and upper bounds for uw (with an accuracy of around 10%). 

Simulations on finite stages of construction of the clupets have also been performed and 
estimates of uw were obtained. These simulations used large lattices which, however, do 
not represent the fractal exactly, and the walks that touched their borders were discarded 
when taking the means [8]. These approximations may lead to incorrect results because 
they neglect the full connectivity of the fractals; for example, overestimating the effect of 
the central lacuna in the finite lattice. This problem was already pointed out for directed 
self-avoiding walks on the carpets: when series expansions methods which consider the 
true fractal limit were applied, the results were very different from simulations estimates 
[ 1 1,121. 

The purpose of this work is to obtain reliable and accurate estimates of vw for the 
Sierpinski carpets and for Sierpinski pastry shells (DF > 2), improving all previous 
estimates, Monte Carlo simulations of random walks on finite (not necessarily large) stages 
of construction of these fractals are performed. These simulations do not discard walks that 
touch the borders of the lattices, so that the problem of random walks confined in finite 
lattices is studied. It is shown that the mean-square displacement obeys a finite-size scaling 
hypothesis and vw is obtained from it. These techniques have proved to be extremely 
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powerful in the study of the critical behaviour of magnetic models, using the data from 
simulations on finite lattices or exact results on small lattices [13-161. 

This paper is organized as follows. In section 2 we present the finite-size scaling 
hypothesis for random walks and a brief description of the simulations techniques. In 
section 3 we analyse the results of simulations on fractals where the random walk problem 
can be solved exactly. In section 4 we use the same method to calculate U, for the Sierpinski 
carpets. The results are carefully discussed, giving special attention to the effects of DF. 
the lacunarities and the ramification of the fractals on U, and U,. In section 5 we apply 
the method to fractals with dimensions DF between 2 and 3, the Sierpinski pastry shells. 
Section 6 contains our final conclusions. 

2. Finite-size scaling for random walks 

Consider a magnetic system in a lattice of length L at temperature T. The finite-size scaling 
hypothesis for a thermodynamic function FL(T) is expressed as [I41 

where j is a generic function of its argument LIS, 5 is the correlation length of the infinite 
system and the exponent h describes the critical behaviour of the function F ( T )  in the 
infinite lattice. Equation (3) separates finite size effects and the true critical behaviour in a 
convenient way. 

Using the correspondence between magnetic and geometric quantities and equation (3), 
we propose a finite-size scaling hypothesis adapted for a walk confined inside a lattice with 
length L: 

It is expected that 

f ( x )  - x-1 x - + m  (5 1 

so that (1) is recovered when L + CO. When h -+ 00 in a finite system, (4)  leads to 

( R i ) ” 2  - L .  (6) 

Similar scaling properties have already been observed in self-avoiding walks confined 
inside spheres [17]. However, they have not been applied to fractals before. 

In order to estimate U, in a fractal, we simulate random walks confined on finite stages 
of its construction. The initial site for each walk is randomly chosen over the lattice and 
N,, is its maximum number of steps. At each step the walker has probability l/z; to 
move to any neighbouring site, where z; is the number of neighbours of the actual site i 
(it is called the ‘myopic ant rule’ to construct a RW 151). Averaging over a certain number 
of initial sites (number of generated walks), we obtain ( R i )  for each N in a stage with 
characteristic length L. Then we plot (Ri ) ’ /* /L  versus LN-’. using several values of U,. 
The best estimate of U, will be the one which provides the collapse of the data for different 
stages (different L )  in the same curve. This procedure is equivalent to some applications 
of finite-size scaling to magnetic systems [14-161. 
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3. Applications for finitely ramified fractals 

Thefinite-size scaling hypothesis (equation (4)) will be tested for the fractals in figures 2(a) 
and (6). 

The first test is in the 3-simplex fractal (figure Z(u)). The asymptotic behaviours of 
random walks on this fractal and on the Sierpinski gasket are equivalent, with U, = 
In2/In5 0.4306 [4]. We performed simulations on stages n = 3, 4, 5 and 6 of its 
construction. They correspond to L = 8, 16, 32 and 64, respectively, taking the number 

SAGE n, rr3 

Figure 2. (a)  Iterative conssvuction of the 3-simplex fractal. the fractal dimension of which is 
DF = ln3/ln2. (b) Iterative consmaion of the Sierpinski gasket with scale factor b = 3, the 
fractal dimension of which is DF = ln6/ln3. 
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Figure 3. Plots of (R,?,)'/*/L VMUS LN-Y'" 
for random walks on finite stages of the 3- 
simplex. 
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of sites in one border as the length of the system. The number of walks generated in the 
simulations varied from 20000 for L = 8 to 100000 for L = 64, and the values of N- 
were 60 and 8000 for these lattices, respectively. The results from different simulations 
indicate that the errors in (Ri) are always less than 1% (for small walks, around 0.1%). 

In figures 3(a) and (b)  we plot (Ri)’/’/L versus x = LN-“= for vu, = 0.431 (equal 
to the exact U, up to three decimal places) and U, = 0.444 (3% above the exact value). 
These plots used non-uniformly separated values of N, but when all values of N are plotted 
we obtain almost continuous curves for the greatest lattices, so that the collapse of the 
data can be analysed in greater detail. The collapse in figure 3(a) is extremely good, and 
the divergence of the data. in figure 3(b) proves the accuracy of the method. When the 
uncertainties of the simulations are considered, the plots for some values of U, around 
0.431 show intersec.tions of different lattices’ data. From them we obtain an estimate 
U, = 0.431 & 0.006 for the 3-simplex. 

In the plot of figure 3(a) we note that the data for L = 8 slightly diverge from the 
other lattices’ data when x % 1. It means that other finite-size effects (corrections to (4)) 
take place, but they rapidly decrease as L increases, so that (4) is sufficient to describe,the 
behaviour of random walks on finite lattices. 

The limit of (6) can be tested with simulations for very large numbers of steps, when a 
saturation of ( R i )  is observed. For example, ( R i )  in stage 6 (L = 64) saturates ai around 
N = 15000. Estimates of (RL) ( ( R i )  for N + 00) are obtained from the maximum and 
minimum values of (Ri) for several N after that saturation. with an accuracy of around 
2%. In figure 4 we plot (R:)’/’ versus L for the lattices studied. The straight line has 
an inclination of exactly 1, confirming equation (6) (with a slight deviation for the smallest 
lattice). 

The other test is for the Sierpinski gasket with scale factor b = 3 (figure 2(b)). In 
this fractal U, = In3/1n(90/7) 0.4301 [5]. I t  is an important test because this fractal 
has non-uniform coordination number, in contrast to the 3-simplex and the usual Sierpinski 

Figure 4. Plot of (R&)’/’ JS funnion of L in four stages of the 3-simplex. The suaighr line 
has inclination 1. 
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6 Figure 5. Plot of ( R i ) ' D I L  versus LN-"u for 
random walks on finite stages of the Sierpinski 
gasket with b = 3. 

gasket (with scale factor b = 2). We simulated random walks on stages n = 2, 3, 4 and 5, 
corresponding to L = 9, 27,81 and 243. In figure 5 we plot ( R i ) ' l z / L  versus x = LN-". 
for U,,, = 0.429, the value which provides the best data collapse. We note that the data for 
the smallest lattice ( L  = 9) diverge from the others, but the collapse of the data for L = 27, 
81 and 243 is excellent. Our final estimate of U,,, is 0.429 =k0.004. This result includes the 
exact value and the centre of the error bar differs from it by only 0.3%. 

4. Random walks on Sierpinski carpets 

The Sierpinski carpets are constructed by the recursive iteration of a generator as shown in 
figure 1. An initial square is divided into b2 subsquares and m of them are eliminated 
according to a fixed rule, and this procedure is applied recursively to the remaining 
subsquares. The lattice whose sites are in the vertices of the non-eliminated subsquares 
after an infinite number of iterations has fractal dimension 1181 

We studied random walks on the carpets, the generators of which are shown in figures 6(a)- 
(h) ,  numbered as 1 to 8 (with decreasing DF), respectively. The characteristic length of a 
finite stage of construction n is L = b", as before. 

Table 1. Stages n of construction of the carpets on which random walks were simulated, the 
maximum number of steps N,, on each lauice. the corresponding fractal dimensions Dp, the 
estimates of v, and the estimates of v, obtained with series expansion methods [9]. 

Carpet DF n "U VU' VC 

1 1.9746 2,3,4 5W, 14000,300000 0.492 1 0.005 0,490 & 0.002 
2 1.9343 2.3 1500.45 000 0.483 * 0.005 0.4701 0.005 
3 1.9343 2.3.4 1500.45 000.2000 000 ' '0.483 0.005 0.480 i 0.W5 
4 1.8957 2.3 ~ ,3000. 120000 0.477 & 0.004 0.455 1 0.005 
5 1.8957 2.3 3000,l20000 0.475 1 0.W4 0,475 k 0.015 
6 1.8928 2.3.4.5 100,1000.8000.80000 0.476&0.005 O.45&0.01 
7 1.8617 2,3 6000,300 000 0.472 i 0.004 
8 1.8617 2, 3 6000,300WO 0.471 & 0.004 
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(8) ( h )  

Flgure 6. Generalon of Sierpinski carpets 1-8: ( 0 )  b = 5,  m = 1; (b)  and ( c )  b = 6, m = 4; 
(d)  and (e) b = 7 ,  m = 9: (f) b = 3, m = 1 ;  (9) and (h) b = 8, /(I = 16. 

In table 1 we present the stages of construction of the carpets on which random walks 
were simulated and the maximum number of steps for each lattice. The total number 
of walks used in the statistics was 500000, divided into five independent simulations. The 
only exception was the fourth stage of carpet 3 ( L  = 1296): as we had to generate very 
long walks (up to 2 x IO6 steps) and due to computer time limitations, only 120000 walks 
were generated. 

The accuracy of the results was estimated from the dispersion of ( R i )  for each N in 
different simulations. It is less than 0.5% for lattices with L < 50, generally the smallest 
stages used. For the other lattices with L < 250 the errors rarely exceed 1% and for the 
largest lattices they are near 2% even for long walks. The slow growth of the statistical 
errors in (R;) is due to the confinement of the walk, which limits its displacement. 

In figures 7(a )  and (6)  we plot (Ri )”*/L  versus x = LN-Yu for carpets 3 and 6, 
respectively, using the value of U, (with three decimal places) which provides the best data 
collapse for each fractal. 

For carpet 6, which has the smallest scale factor (b = 3), four stages were studied (see 
table 1). The data for n = 3, 4 and 5 ( L  = 27, 81 and 243) collapse into a single curve 
even for x x 1, where the finite-size effects are very intense (see figure 7(b)) .  The data for 
n = 2 diverge from the others probably due to its small length ( L  = 9), as already observed 
in the fractals of section 2. For carpet 3 we also observe the collapse of three lattices’ data 
(see figure 7(a)). These results bring more confidence to the other estimates, most of them 
based on data of only two stages but with sufficiently large values of L ( L  > 25 in all 
cases). 

In table 1 we show the final estimates of U, for each fractal, obtained with the same 
procedure described in section 3. AI1 those values agree with the lower and upper bounds 
for v, obtained with bond-moving renormalization [SI,  but^ are much more accurate (error 
bars - 1%). 

The effect of the lacunarity on U, is very small. Carpets 2 and 3 have the same DF 



6284 F D A  Aarao Reis 

0.5 

' 0.4 

kz 0.3 
0.2 

f: 
h 

v 

0.1 
2 4 6 

LN-"w 
( b )  0.6 

0.5 

0.2 

0 . 1 1 '  ' " ' I  ' " ' I  Figure 7. Plot of ( R $ ) ' t 2 f L  versus LNWum 
2 4 6 for random walks on finite stages of: (U) LN-"* carpet 3; (b) carpet 6. 

but different lacunarities [IO, 191. and the same holds for the pairs of carpets 4, 5 and 
I, 8. In each pair, the first fractal has lower lacunarity, which means a more homogeneus 
distribution of mass. The differences of v, are less than 0.5% in each pair. 

In other models previously studied in the carpets, such as ideal chains or self-avoiding 
walks, the influence of the lacunarity on the critical exponents is very important [9,20]. 
Thus it is surprising that it is not so 'important to the asymptotic behaviour of random 
walks. 

In figure 8 we plot U, x DF for the carpets 1 to 8.  we^ observe that the general trend 
is that vu decreases (D, increases) when DF decreases. Interpolating those data one can 
predict the values of U, for other carpets with DF 2 1.85 with uncertainties close to the 
ones in table 1. 

Phenomenological formulae for VSAW as function of v, and DF have been proposed and 
analysed in many fractals [21-241, and other universal properties of physical systems on 
fractals are still being discussed [25,26]. Our estimates and the possibility of interpolating 
them for other carpets may guide future investigations in which v, is considered a relevant 
parameter. 

In table 1 we also present some previous estimates for the ideal chain exponent U, [9]. 
For lattices 2, 4 and 6 we obtain U, z v,, while for lattices 1, 3 and 5 U, % U,. 

In finitely ramified fractals a statistical attraction of the chain to the highest coordination 
sites, which are isolated or connected along a single path, is observed. In the carpets, 
however, these sites ( z  = 4) are generally connected to similar sites in all directions, while 
the low coordination sites (z = 3) are in the borders of the lacunas. Then the highest 
coordination sites form an infinite connected cluster, with narrow corridors only between 
some lacunas of high lacunarity lattices (like carpets 3, 5 and 8). 
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Figure 8. Plot of the exponent vu, versus the fractal dimension DF for carpets 1-8. The data 
for capes with the same dimension are shown using near e m r  bars. 

The result w, < U, < 4 in some carpets indicates that the compression of the ideal 
chain is greater than the compression of the random walk (relative to both systems in two 
dimensions). It seems that the compression of the ideal chain is due not only to the lacunas 
but also to their borders (sites with z = 3), while for random walks only the repulsion of 
the lacunas exists. This speculation is based on the (statistical) attraction of the chain to 
the highest coordination sites discussed above [5,6]. In fractals where U, % vc, either this 
effect is reduced (carpet 1) or it is compensated for by the stretching of the chain in some 
corridors between lacunas (carpets 3 and 5). 

The results of previous simulations which did not use finite-size scaling techniques for 
carpets 1, 3, 5 and 8 are different than ours [SI. Probably it was due to an overestimation 
of the compression of the central lacunas, although the lattices used were large. It would 
have been convenient to test that method in fractals where exact solutions are known to 
analyse its efficiency. 

Figure 9. Generators of Sierpinski panty shells: ( a )  b = 3. m = I ;  (b)  b = 5, m = 21. Internal 
bonds of the generator are shown only in (a).  
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1 ,  4 , ,  I .  i A.. 
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Figure 10. Plors of ( R i ) ‘ / l / L  v e n u  LN-Ym for random walks on finite stages of pasay 
shell 1.  

5. Random walks on fractals with 2 < Dp -c 3 

We studied random walks on two Sierpinski pastry shells [18], the generators of which 
are shown in figures 9fu) and (b),  numbered 1 and 2, respectively. They are constructed 
iteratively like the carpets, with small cubes substituted by the generator at, each stage. 
After an infinite number of iterations,  the fractal lattice whose sites are in the vertices of 
the non-eliminated cubes has dimension 

(8) 
In(b3 - m) 

In b 
DF = 

where b is  the scale factor and m is the number of eliminated cubes in the generator. 

Table 2. Ertimtes of uU for pasuy shells I and 2 md their fractal dimensions D F .  

VU . .  Pastry shell DF 

1 2.9656 0.492 i 0.006 
2 2.8488 0.478 f 0.004 

In table 2 we present the dimensions of the two fractals studied and the estimates of U,. 
The great number of lattice sites to be allocated in the computer for the simulations was 
the stronger reason to study only these lattices: they have small scale factors and at Ieast 
two stages with length not very small. 

In figure 10 we plot (R,?,)’’*/L versus x = LN-”= for pastry shell 1, using the value 
of U, which provides the best data collapse. We note That the data for stage n = 2 ( L  = 9) 
diverge from the following stages’ data (n = 3 and 4), the same phenomena observed in 
other fractals. 

The estimates of U, prove that there is anomalous diffusion in these fractals, as expected. 
According to them we may also propose that U, decreases when the decrease of DF is large, 
as observed in the carpets. 

Simulations in other Sierpinski pastry shells with equal dimensions and different 
lacunarities would be interesting to find the extension of the properties of random walks 
on the carpets. However, one would have to deal with lattices with many sites and special 
techniques of simulation may have to be developed. 



Finite-size scaling for random walks on fractals 

6. Conclusion 

6287 

Finitesize scaling techniques were used to calculate the anomalous diffusion exponent v, 
in various regular fractals, using data from simulations on their finite stages of construction. 
Applications to fractals where the problem is exactly solvable proved that reliable and 
accurate estimates can be obtained. 

For the Sierpinski carpets new results were presented. For example, the relation U, > U, 
was found in many lattices, in contrast to the result vw < v, in some finitely ramified fractals. 
It was also shown that the dependence of uw on DF is much stronger than its dependence 
on other geometrical properties such as lacunarity, in contrast to some related systems (e.g. 
ideal chains or self-avoiding walks). 

For Sierpinski pastry shells (2 < DF < 3) estimates of w, <: f were also obtained. 
The comparison with other techniques to study critical phenomena on fractal lattices 

shows the advantage of finite-size scaling. Simulations on large lattices but not analysed with 
this technique give biased estimates of critical exponents and renormali&tion techniques for 
infinitely ramified fractals make approximations of the lattices. Series expansions methods, 
although considering the true fractal limit, generally do not provide such accurate results 
due to the small orders of the series. Also note the possibility of studying fractals with 
DF % 3, which would be much more difficult with the other methods. 

Other problems can be studied using this technique, such as self-avoiding walks on 
fractals. Then many classes of fractals can be studied and some open questions, the solutions 
of which depend on accurate estimates of critical parameters, may be answered. Work along 
these lines is in progress. 
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